|
Multi-disciplinary design optimization (MDO) is a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines. It is also known as multidisciplinary optimization and multidisciplinary system design optimization (MSDO). MDO allows designers to incorporate all relevant disciplines simultaneously. The optimum of the simultaneous problem is superior to the design found by optimizing each discipline sequentially, since it can exploit the interactions between the disciplines. However, including all disciplines simultaneously significantly increases the complexity of the problem. These techniques have been used in a number of fields, including automobile design, naval architecture, electronics, architecture, computers, and electricity distribution. However, the largest number of applications have been in the field of aerospace engineering, such as aircraft and spacecraft design. For example, the proposed Boeing blended wing body (BWB) aircraft concept has used MDO extensively in the conceptual and preliminary design stages. The disciplines considered in the BWB design are aerodynamics, structural analysis, propulsion, control theory, and economics. ==History== Traditionally engineering has normally been performed by teams, each with expertise in a specific discipline, such as aerodynamics or structures. Each team would use its members' experience and judgement to develop a workable design, usually sequentially. For example, the aerodynamics experts would outline the shape of the body, and the structural experts would be expected to fit their design within the shape specified. The goals of the teams were generally performance-related, such as maximum speed, minimum drag, or minimum structural weight. Between 1970 and 1990, two major developments in the aircraft industry changed the approach of aircraft design engineers to their design problems. The first was computer-aided design, which allowed designers to quickly modify and analyse their designs. The second was changes in the procurement policy of most airlines and military organizations, particularly the military of the United States, from a performance-centred approach to one that emphasized lifecycle cost issues. This led to an increased concentration on economic factors and the attributes known as the "ilities" including manufacturability, reliability, maintainability, etc. Since 1990, the techniques have expanded to other industries. Globalization has resulted in more distributed, decentralized design teams. The high-performance personal computer has largely replaced the centralized supercomputer and the Internet and local area networks have facilitated sharing of design information. Disciplinary design software in many disciplines (such as OptiStruct or NASTRAN, a finite element analysis program for structural design) have become very mature. In addition, many optimization algorithms, in particular the population-based algorithms, have advanced significantly. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Multidisciplinary design optimization」の詳細全文を読む スポンサード リンク
|